Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 92, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429657

RESUMO

BACKGROUND: In recent years, researchers have made significant strides in understanding the heterogeneity of breast cancer and its various subtypes. However, the wealth of genomic and proteomic data available today necessitates efficient frameworks, instruments, and computational tools for meaningful analysis. Despite its success as a prognostic tool, the PAM50 gene signature's reliance on many genes presents challenges in terms of cost and complexity. Consequently, there is a need for more efficient methods to classify breast cancer subtypes using a reduced gene set accurately. RESULTS: This study explores the potential of achieving precise breast cancer subtype categorization using a reduced gene set derived from the PAM50 gene signature. By employing a "Few-Shot Genes Selection" method, we randomly select smaller subsets from PAM50 and evaluate their performance using metrics and a linear model, specifically the Support Vector Machine (SVM) classifier. In addition, we aim to assess whether a more compact gene set can maintain performance while simplifying the classification process. Our findings demonstrate that certain reduced gene subsets can perform comparable or superior to the full PAM50 gene signature. CONCLUSIONS: The identified gene subsets, with 36 genes, have the potential to contribute to the development of more cost-effective and streamlined diagnostic tools in breast cancer research and clinical settings.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico , Biomarcadores Tumorais/genética , Proteômica , Perfilação da Expressão Gênica/métodos , Técnicas Genéticas
2.
IEEE/ACM Trans Comput Biol Bioinform ; 19(5): 2547-2559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34860652

RESUMO

Breast cancer is the second most common cancer type and is the leading cause of cancer-related deaths worldwide. Since it is a heterogeneous disease, subtyping breast cancer plays an important role in performing a specific treatment. Gene expression data is a viable alternative to be employed on cancer subtype classification, as they represent the state of a cell at the molecular level, but generally has a relatively small number of samples compared to a large number of genes. Gene selection is a promising approach that addresses this uneven high-dimensional matrix of genes versus samples and plays an important role in the development of efficient cancer subtype classification. In this work, an innovative outlier-based gene selection (OGS) method is proposed to select relevant genes for efficiently and effectively classify breast cancer subtypes. Experiments show that our strategy presents an F1 score of 1.0 for basal and 0.86 for her 2, the two subtypes with the worst prognoses, respectively. Compared to other methods, our proposed method outperforms in the F1 score using 80% less genes. In general, our method selects only a few highly relevant genes, speeding up the classification, and significantly improving the classifier's performance.


Assuntos
Técnicas Genéticas , Neoplasias , Feminino , Humanos
3.
Sensors (Basel) ; 12(6): 6930-52, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22969329

RESUMO

Target tracking is an important application of wireless sensor networks. The networks' ability to locate and track an object is directed linked to the nodes' ability to locate themselves. Consequently, localization systems are essential for target tracking applications. In addition, sensor networks are often deployed in remote or hostile environments. Therefore, density control algorithms are used to increase network lifetime while maintaining its sensing capabilities. In this work, we analyze the impact of localization algorithms (RPE and DPE) and density control algorithms (GAF, A3 and OGDC) on target tracking applications. We adapt the density control algorithms to address the k-coverage problem. In addition, we analyze the impact of network density, residual integration with density control, and k-coverage on both target tracking accuracy and network lifetime. Our results show that DPE is a better choice for target tracking applications than RPE. Moreover, among the evaluated density control algorithms, OGDC is the best option among the three. Although the choice of the density control algorithm has little impact on the tracking precision, OGDC outperforms GAF and A3 in terms of tracking time.

4.
Sensors (Basel) ; 9(9): 7287-307, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22423207

RESUMO

Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...